

Introduction

- Nitrogen (N) inversely affects sugarbeet root yield and percentage sugar and therefore must be balanced for optimal return.
- Sugarbeet is often the first crop planted in spring and subject to longer periods of weather variability and fertilizer uncertainty including N leaching, denitrification, and volatilization.
- Achieving early canopy development and row closure through increased light interception and plant biomass is critical for maximizing sugar content in the beet root.

Objective

• To study the effects of enhanced efficiency fertilizers in comparison to standard N management programs on sugarbeet yield and quality.

Materials and Methods

- Field study was initiated in Richville, MI on a Tappan-Londo loam complex in 2014.
- Eight treatment randomized complete block design with four replications
- Individual six row plots were 4.5 m wide by 10.7 m long with 76.2 cm row spacing.
- All treatments received 45 kg N ha⁻¹ as 28% UAN applied as a 5x5 (cm) at planting with total N applications at 179 kg N ha⁻¹.
- Treatments consisted of the following:
 - Urea sidedressed with light cultivation
 - Urea applied pre-emergence with a urease and nitrification inhibitor
 - Urea applied pre-emergence with and without a urease inhibitor
 - UAN banded sidedress with and without a urease inhibitor without cultivation
 - Ammonium polyphosphate (10-34-0) applied in-furrow with remaining N as urea sidedressed with light cultivation
 - A 75:25 ratio of polymer-coated urea:urea applied pre-emergence
- Data measureables:
 - Plants 16.3 m⁻² were counted at 15 and 25 days after planting.
 - Weekly digital images were taken from the 2-4 leaf stage until canopy closure to determine percent canopy coverage.
 - Tissue samples were collected in June and July 2014 and analyzed for total N.
 - Chlorophyll readings were collected to determine sugarbeet leaf greenness.
 - At harvest the center two rows were harvested to determine yield and sugar components.
- Data were analyzed using PROC GLIMMIX in SAS and means were separated using Fisher's protected $LSD_{(0.05)}$.

Tal

Ure

Ure Ure

UA

UA

Ure

- In-f
- PC Sig

* Values with the same lower case letter are not significantly different (α =0.05).

(cm.) Precipitation

• First year preliminary data suggest that using enhanced efficiency fertilizers in comparison to standard N programs did not result in significant differences in final root yield or sugar percentage where N loss conditions were not a factor.

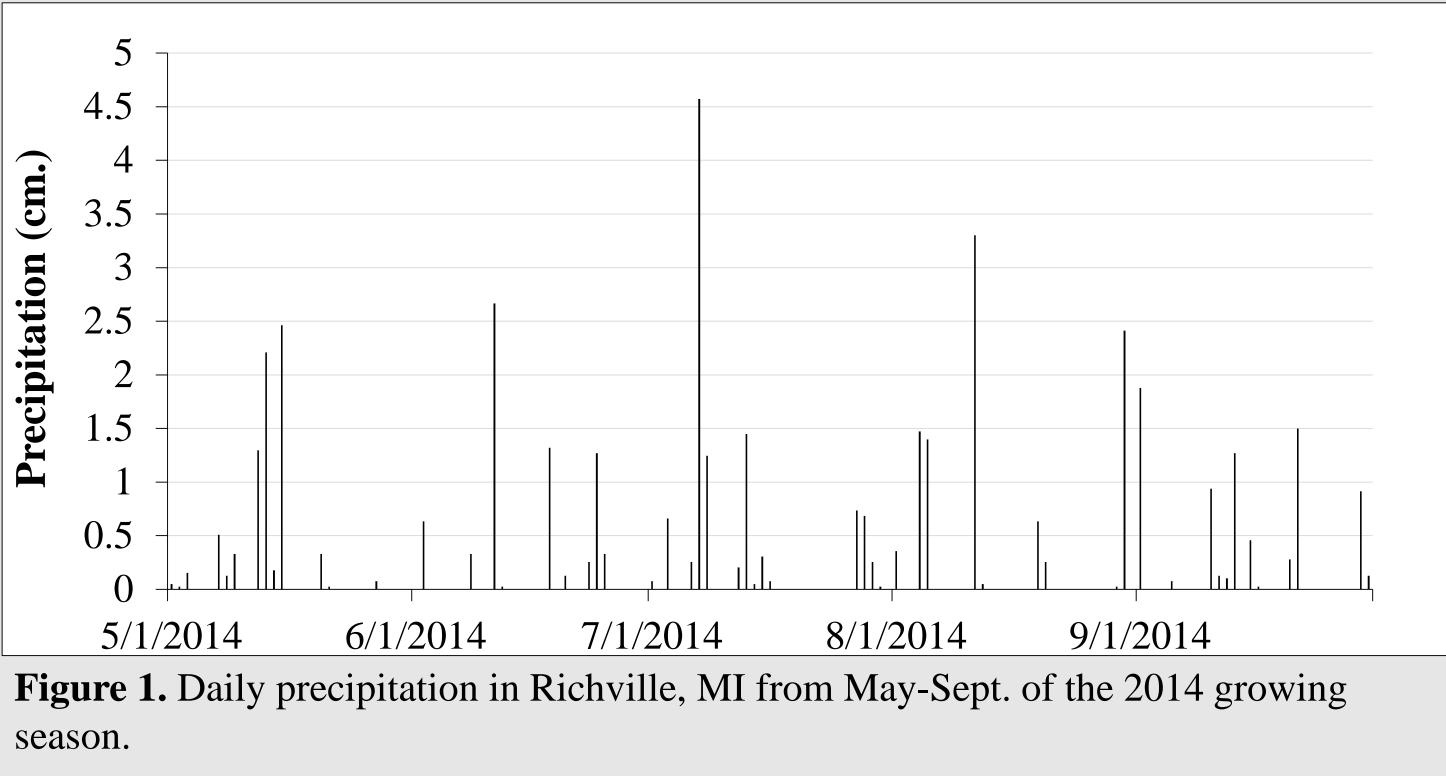
• When applying N pre-emergence, urea alone resulted in a significantly reduced stand whereas N applied with a urease inhibitor and or a nitrification inhibitor did not reduce beet population.

• Although enhanced efficiency fertilizers did not affect root yield or sugar percentage in 2014, this technology did allow for greater pre-plant N application rates without stand loss. With this option growers may be able to 1) more frequently utilize a stale seed bed, and 2) reduce the application risk of greater rates of N in a 5x5 cm application when trying to achieve the overall N rate of 179 kg ha⁻¹ which has resulted in the most economical rate of N for several years running.

Assessing the Use of Enhanced Efficiency Fertilizers on Sugarbeet Yield and Quality

Christopher A. Bauer* and K. Steinke Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI

Results and Discussion


Plants 16.3 m⁻²	
15 DAP	25 DAP
174 a*	168 a
168 ab	160 ab
152 c	145 b
167 ab	160 ab
174 a	164 a
127 d	127 c
159 bc	157 ab
165 abc	159 ab
< 0.001	0.004
	15 DAP 174 a* 168 ab 152 c 167 ab 174 a 175 bc 165 abc

• A significant decrease in plant population was observed where N was applied pre-emergence without a urease inhibitor (Table 1).

• Below average precipitation limited N loss conditions early in the growing season of 2014 (Fig. 1) as 14.7 cm of rainfall was received in the months of May and June.

• Digital images were taken and ran through Sigma Scan Pro 5 to measure canopy coverage (Fig. 2). Sugarbeets receiving in-furrow fertilizer resulted in significantly greater canopy coverage on 3 of the 7 rating dates throughout the growing season (Table 2).

• With minimal N loss conditions throughout the growing season, root yield and sugar quality were not statistically different among the eight treatments (Table 3).

Conclusions

Table 2. Percent canopy coverage on 3 of 7 rating dates, Richville, MI, 2014.				
Treatment	May 29	June 12	June 26	
	%	%	%	
Urea sidedressed w/cultivation	3.0 b*	23.6 ab	78.1 ab	
Urea w/urease & nitrification inhibitor pre-emergence	1.4 d	19.4 c	67.1 c	
Urea w/urease inhibitor pre-emergence	1.6 cd	21.4 bc	72.3 bc	
UAN sidedressed no cultivation	1.6 cd	19.3 c	66.4 c	
UAN sidedressed w/urease inhibitor	1.8 c	20.6 bc	68.6 c	
Urea pre-emergence	1.5 cd	20.5 bc	73.1 abc	
In-furrow followed by urea sidedressed	3.8 a	26.0 a	79.9 a	
PCU:urea pre-emergence (75:25 ratio)	1.8 c	20.3 c	76.4 ab	
Significance P>F	< 0.001	0.028	0.027	
* Values with the same lower case letter are not signific	cantly differe	$ent (\alpha = 0.05)$		

values with the same lower case letter are not significantly different ($\alpha = 0.05$).

Figure 2. Digital image taken on 12 June 2014 (a) and the same digital image ran through Sigma Scan Pro 5 (b) to measure percent canopy coverage. The resultant canopy coverage in this photo was 26.6 %.

Table 3. Sugarbeet root yield (Mg ha⁻¹) and sugar quality (g kg⁻¹), Richville, MI, 2014.

Treatment	Yield	Sugar
	Mg ha ⁻¹	g kg-1
Urea sidedressed w/cultivation	86.2 a*	183 a
Urea w/urease & nitrification inhibitor pre-emergence	77.9 a	184 a
Urea w/urease inhibitor pre-emergence	82.7 a	188 a
UAN sidedressed no cultivation	84.2 a	189 a
UAN sidedressed w/urease inhibitor	82.2 a	187 a
Urea pre-emergence	78.8 a	187 a
In-furrow followed by urea sidedressed	82.7 a	185 a
PCU:urea pre-emergence (75:25 ratio)	77.3 a	188 a
Significance P>F	0.764	0.749

Thank you to Andrew Chomas, Paul Horny, and Dennis Fleischmann for their technical assistance and the Michigan Sugar Company and MSU AgBioResearch for funding.

Acknowledgements